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The role of Regge calculus as a tool for numerical relativity is discussed, and a 
parallelizable implicit evolution scheme described. Because of the structure of 
the Regge equations, it is possible to advance the vertices of a triangulated 
spacelike hypersurface in isolation, solving at each vertex a purely local system 
of implicit equations for the new edge lengths involved. (In particular, equations of 
global "elliptic type" do not arise.) Consequently, there exists a parallel evolution 
scheme which divides the vertices into families of nonadjacent elements and 
advances all the vertices of a family simultaneously. The relation between the 
structure of the equations of motion and the Bianchi identities is also considered. 
The method is illustrated by a preliminary application to a 600-cell Friedmann 
cosmology. The parallelizable evolution algorithm described in this paper should 
enable Regge calculus to be a viable discretization technique in numerical 
relativity. 

1. NUMERICAL RELATIVITY VIA (FULLY FOUR- 
DIMENSIONAL) REGGE CALCULUS 

Much current activity in numerical relativity is centered around making 
predictions which can be tested by the proposed Laser Interferometry Gravita- 
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tional Observatory (LIGO) (Thorne, 1987, 1990). There is a need to solve 
Einstein's equations numerically for many physical situations which could 
give rise to gravitational waves, so that data from LIGO can be interpreted 
and used, if appropriate, as evidence for the existence of black holes. More 
generally, numerical solutions of Einstein's equations are invaluable for the 
understanding of astrophysical data and for guidance as to what experiments 
to undertake. 

Methods of solving Einstein's equations numerically include finite-dif- 
ference schemes and finite-element schemes. Regge calculus is a type of 
finite-element method, and in this paper we shall describe a way of casting 
it into the form of a highly efficient tool of numerical relativity. 

The basic idea of Regge calculus is the division of spacetime into 
simplicial cells with flat interior geometry (Regge, 1961). The dynamical 
variables are the edge lengths of the simplices, and the curvature, which is 
restricted to the "hinge simplices" of codimension two, can be expressed in 
terms of the defect angles at these hinges, where the flat cells meet. Variation 
of the action leads to the simplicial form of Einstein's equations. The conver- 
gence of the Regge action and equations to the corresponding continuum 
quantities has been investigated thoroughly and has been shown to be satisfac- 
tory under quite general conditions (Cheeger et  al., 1984; Friedberg and Lee, 
1984; Feinberg et  al., 1984; Barrett, 1986, 1988; Barrett and Williams, 1988; 
Brewin, 1989; Sorkin, 1974, 1975a). Regge calculus has been applied to a 
large variety of problems in classical and quantum gravity [see Williams and 
Tuckey (1992) for a review]. Numerical applications in 3 + 1 dimensions have 
been mainly to problems with symmetry and no general code has been 
developed (Collins and Williams, 1973; Brewin, 1983; Porter, 1987a, b; Dubal, 
1987; Lewis, 1982). This is also the case in the alternative approach known 
as null-strut calculus, which builds a spacelike-foliated spacetime with the 
maximal number of null edges (Miller and Wheeler, 1985; Miller, 1986a; 
Kheyfets et  al., 1988, 1990a,b). Although null-strut calculus was used first to 
demonstrate numerically the approximate diffeomorphism freedom in Regge 
calculus (Kheyfets et  al., 1988) and, except for the work described in Sorkin 
(1974), was the first fully (3+l)-dimensional numerical scheme imple- 
mented, 8 we have not found a way to adapt it to the evolution scheme 
described in this paper. Therefore, unless we find an alternative decoupling 
scheme, the standard approach to Regge calculus appears to be much more 
tractable numerically. 

In this paper, we describe how the implementation of ideas developed 
over 20 years ago (Sorkin, 1975a) results in a much more efficient way of 

8 Miller (1990) developed a (3 + 1 )-dimensional initial-value code for null-strut calculus (Oppie- 
3) and applied it to the Kasner cosmology. 
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using Regge calculus in numerical relativity. The evolution of a spacelike 
hypersurface can be achieved one vertex at a time, or in parallel for vertices 
which are not connected by an edge. This scheme is described in Section 2, 
and the role of the Bianchi identities and the resulting freedom to specify 
lapse and shift information are discussed in Section 3. In Section 4, it is 
shown how the scheme works for one of the lattices originally suggested by 
Sorkin, and in Section 5 it is shown how it is related to previous evolution 
schemes using Regge calculus. Section 6 consists of a numerical example, 
and Section 7 contains some concluding remarks. 

2. G E N E R A L  DESCRIPTION OF T H E  E V O L U T I O N  S C H E M E  

In a sense, the scheme which we will describe now is not a new way 
of doing Regge calculus, but rather a new understanding of the elegant way 
in which the standard evolution scheme works in Regge calculus. It is based 
on what is described by Sorkin for two particular lattices (Sorkin, 1975a); the 
general validity of these ideas was realized only recently and is summarized by 
Tuckey (1993). 

Consider a time evolution problem in Regge calculus, and suppose that 
all the edge lengths of a solution, up to and including a given triangulated 
spacelike hypersurface, are known. Then, with an appropriate continuation 
of the triangulation into the future, any vertex on that surface can be evolved 
forward to the corresponding vertex on the next hypersurface by solving only 
a small set of equations from the immediate neighborhood of the vertex. 

To see how this works, look first at what happens in 2+  1 dimensions. 
Consider part of  the two-dimensional spacelike surface surrounding one 
vertex (the star of that vertex) (Fig. 1). To advance this vertex to the next 
hypersurface, we introduce a new vertex "above" it; we connect this to the 
chosen vertex by a "vertical edge," and by "diagonal" edges to all the vertices 
on the original surface to which the chosen vertex was connected. The result 
of this is to stick a tetrahedron, with apex at the new vertex, on each of the 

Fig. 1. Part of a two-dimensional simplicial spacelike surface surrounding a vertex. 
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triangles surrounding the original vertex (Fig. 2). It is rather like erecting a 
tent above the chosen vertex, with the vertical edge as the tent pole and the 
star (within the spacelike hypersurface) of the chosen vertex as the floor of 
the tent. 

In order to evolve the new vertex, we need to find the lengths of the 
new edges. Recall that the empty-space Regge equation for an edge L i, 

OAh 
~]h ~ en = 0 (2.1) 

where the sum is over hinges h, with Ah the volume content of the simplicial 
hinge and eh the defect angle there, involves only the edge lengths of the 
simplices containing L/. Thus the only equations which involve the new 
edges and edges already known are those for the new vertical edge and for 
the edges in the original surface which radiate from the chosen vertex. Since 
by construction there is one such edge corresponding to each new diagonal 
edge, there are precisely the same number of equations as unknown edge 
lengths. Thus one might think that we could solve directly for the edges. 
However, as we shall explain, the equations are expected to have an approxi- 
mate functional dependence among them, which means that (for sufficiently 
fine triangulations) it will probably be better to use the effective lack of 
determination to choose lapse and shift, as in the continuum. 

The construction just described can be generalized immediately to 3 + 1 
dimensions. We choose a vertex on the given spacelike hypersurface, intro- 
duce a new vertex above it, and connect the new vertex by a "vertical" edge 
to the chosen vertex and by "diagonal" edges to all the vertices in the original 

#tl ~\\ 
] ] 11  X \ \  

/ / ] /  / I X \ \  \ \  
11 I I ~ \ 

/ /  / I ~ \ \ 
/ /  I I ~ \ x 

, , , / \ ' ,  
'/ N , 

Fig. 2. A (2+ l)-dimensional "tent" erected over the vertex shown in Fig. 1. The tent 
consists of six tetrahedra sharing a common "vertical" edge (darkened dashed edge). 
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hypersurface to which the chosen vertex was joined. Each tetrahedron in the 
original surface which contains the chosen vertex now has based on it a 4- 
simplex, with apex at the new vertex. Note that again in this tentlike construc- 
tion (Fig. 3), there is one diagonal corresponding to each edge in the original 
surface radiating from the chosen vertex. We now use the variational equations 
for these edges in the original surface and for the vertical edge; the only 
unknown edges which these equations involve are the new vertical edge and 
the diagonal edges and there is the same number of equations as unknowns, so 
in principle we could again solve uniquely for the unknown edges. However, in 
practice we shall again ignore some of the equations and instead specify 
conditions on the lapse and shift. (Although fundamentally all the variational 
equations have the same status, they play different roles in the chosen advance- 
ment scheme. Those associated with the "vertical" edges involve only the 
region between successive spacelike hypersurfaces and are in that sense 
constraint-type equations, whereas those associated with the other edges 
stretch between three such hypersurfaces and are in that sense evolution-type 
equations. Nevertheless, eliminating three degrees of freedom in favor of 

/ /~Ill \\ 
~ I l l  \ \  
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I l l  \ \ 
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I I \ \ \ \ 
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Fig. 3. A section of a (3 + l)-dimensional "tent" erected over a vertex in a spacelike hypersurface. 
For each tetrahedron in the hypersurface, a 4-simplex is constructed with apex at the new 
vertex. Due to the complexity of the diagram we show here only one of the numerous simplices 
sharing the common "vertical" edge. 



820 Barrett et aL 

A i ~ i 
V v v v 

r  ~ ~ = = Step I 

/ I "- I "- 

_"~ ~ ~'J'_ ~"_ _- Step 2 

/ I "~ I "~ I "-  

~ .  L , ~  ~1~ " ~  Step 3 
v v v v v 

and so on 
Fig.  4. Evolu t ion  o f  a surface in 1 + 1 d imens ions ,  by advanc ing  the vertices one-by-one .  

freely specifiable shift information effectively treats three combinations of 
the latter equations as "constraint-like" as well.) 

So far, we have described how to advance just one vertex in time. The 
method can clearly be used to evolve the entire hypersurface, by advancing 
the vertices one-by-one (see Fig. 4 for a representation of this process in 
1 + 1 dimensions). This process is completely general; it can be used for any 
triangulation of a hypersurface having any topology. 

Advancing the vertices one-by-one will not ordinarily be the most effi- 
cient way of evolving a hypersurface. If any two vertices in a hypersurface 
are not connected by an edge, then they can be evolved to the next surface 
at the same time without interfering with each other, as shown schematically 
in Fig. 5. Thus the method is obviously parallelizable. 

Whichever the order in which the vertices are advanced, each vertex 
has a unique predecessor and successor, and so the structure always contains 
lines through it connecting the vertices in this way. Thus it is "washing-line 
topology." The particular order of advancement chosen hangs the washing 
on the line in a particular way. 

v v v 
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" F  F - - - / 1 " .  

/ I "- I / I - .  

~ ,  L - . ~  /~ " ~  Step 2 
v v v v v 

and so on 
Fig.  5. Evolu t ion  o f  a surface  in 1 + 1 d imens ions ,  by advanc ing  the vert ices in parallel  

(cf. Fig. 4). 
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After a vertex has been evolved one step, the new exposed 3-surface, 
which is made up of most of the old hypersurface plus the exposed tetrahedral 
faces of the 4-simplices which were added, has the same triangulation as 
the original hypersurface. This is because the way that the 4-simplices are 
constructed ensures that each tetrahedron in the original surface has a corres- 
ponding tetrahedron in the new surface. Thus the structure of the exposed 
3-surface is the same at all stages of the time evolution calculation, even 
though the structure of the 4-dimensional slice beneath that 3-surface depends 
on the order in which the vertices were advanced to it. This beautifully simple 
structure could, however, be seen as a limitation if one wants to allow less 
"orderly" geometries where the triangulation or even the topology changes 
in time. One might wish to generalize the scheme to something more flexible 
where two washing lines knot together or one branches out into two. It is 
possible that this could be achieved by using a sequence of elementary moves 
on the triangulation (Barrett, 1992). 

In a time evolution calculation the "vertical" edges always go between 
hypersurfaces. However, the "diagonal" edges initially lie in a new hypersur- 
face, but later may be regarded as going between surfaces when more of the 
original surface is evolved (see Fig. 5). What restriction does causality place 
on them? Consider the "tent" above a chosen vertex; we are trying to calculate 
the 4-geometry within it from data given on (and below) the base of the tent, 
so the tent as a whole ought to lie within the domain of  dependence of its 
base. Thus, even though the Regge equations are in one sense being solved 
"implicitly," we expect that the solution will be unstable if this causality 
condition is not satisfied, i.e., the whole of the tent should be contained 
within the "light pyramid" on its spacelike base (Fig. 6). (We do not claim 
that this causality condition is sufficient for the solution to be stable; this 
question clearly requires further investigation.) In particular, the diagonal 
edges, which form the boundary of the tent, must be spacelike. On the other 
hand, the vertical edge could in principle be timelike, null, or spacelike. 
Since it seems that the diagonal edges will have to be spacelike, we see that 
all the 3-surfaces, even the ones which could be thought of as intermediate 

vertical edge ~..~ ~ ~ ~  light-cone 
/ ,.~'<.~1 "~ ~ diag~ edge 

Fig. 6. To ensure an accurate evolution step (in accordance with the Courant limit) we must 
choose the lapse and shift conditions so that the "tent" lies within the "light cone on" its 
spacelike base as illustrated here in its ( l + l)-dimensional form. (Notwithstanding the implicit 
character of our scheme, we believe it will still be subject to a Courant limit as a result of its 
strict locality.) 
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stages in the evolution of some starting hypersurface to the next, will actually 
be spacelike. A picture emerges of a whole pile of "concertina'd" spacelike 
3-surfaces lying on top of each other in many places, with occasional gaps. 
To use yet another metaphor, it looks like puff pastry. 

The requirement that the diagonal edges be spacelike indicates that it 
will not be a good idea to advance one particular vertex by several steps 
while not evolving the surrounding ones. In that case, the diagonal edges 
would be likely to become timelike rather soon, and long, narrow triangles 
would be produced, which have proven not to be good in numerical calcula- 
tions (Miller, 1986a) and are also known to be bad for convergence (Barrett 
and Parker, 1994). 

Finally let us mention a possible application of these same ideas to the 
initial value problem. Since in the formulation just described there is no 
meaningful distinction between initial-value and time-evolution equations, 
one could contemplate building up an initial set of edge lengths by the 
same process of "advancing vertices" described above in the context of time 
evolution. The only difference would be that certain edge lengths which 
occurred in the equations would now be unknown, and therefore freely 
specifiable as initial data, rather than given by the results of prior evolution. 
This would seem to lead to a parallelizable method for solving the initial 
value equations as well. On the other hand, one would not expect this to be 
possible, since the initial value problem has a fundamentally elliptic character, 
in contrast to the time evolution problem, which in the continuum is hyper- 
bolic, and therefore effectively local. Perhaps the resolution is that an initial 
value solution produced by any such scheme of "advancing" individual verti- 
ces would behave unstably, but at any rate it seems a question worthy of 
further study. 

3. BIANCHI IDENTITIES AND LAPSE AND SHIFT 

Let us look now at the counting involved in the type of evolution scheme 
just described. At first sight there appears to be an exact match at each vertex 
between the number of unknown variables (edge lengths) and the number of 
equations available to determine these. Two obvious and related questions 
arise. First, are all the equations independent? Second, what has become of 
the freedom to choose lapse functions and shift vectors which exists in the 
continuum theory? 

This matching of the numbers of unknowns and equations precisely 
mirrors the continuum theory, where we have ten unknown metric components 
(g~0 and ten Einstein equations (G~ = 87rT~0 available to determine them. 
However, we know that in the continuum not all of the equations are indepen- 
dent. There is a fourfold redundancy corresponding to the contracted Bianchi 
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identities (V. G --- 0). Thus in the continuum theory we are free to impose 
four conditions per point on the metric (one lapse condition and three shift 
conditions) when evolving from one 3-geometry to the next. Furthermore, the 
constraint equations once satisfied on the initial 3-geometry will automatically 
remain solved in the evolution. This is analogous to conservation of energy 
and momentum. Therefore in practice we must solve six evolution equations 
for the six metric parameters that remain. 

These continuum relationships have their counterparts in Regge calculus 
and in particular when applied to the scheme described in the previous 
section. In Regge calculus, the ordinary Bianchi identities correspond (in 
four dimensions) to the statement that the product of the rotation matrices 
for the hinges meeting on any edge is the identity transformation (Regge, 
1961). In the limit of small defect angles, it can be shown that this is equivalent 
to the usual continuum Bianchi identities. In this case the equivalent of the 
contracted Bianchi identity is that the sum over all edges meeting at a vertex, 
of the equivalent of the Einstein tensor along that edge, is zero (Barrett, 1986; 
Miller, 1986b). However, this vector equation is an approximate identity; it 
is only exact in the linearized case or in the continuum limit. Thus it provides 
four approximate equations per point, relating the Regge equations for the 
edges at that vertex. This is associated with an approximate symmetry of 
the theory. 

The implications of the contracted Bianchi identities for our evolution 
scheme therefore go as follows. When we evolve a vertex we will have N 
equations for N unknown edge lengths. Because of the approximate fourfold 
redundancy per vertex we expect to be able to use N - 4 of the equations 
together with four externally imposed lapse and shift conditions to solve for 
the unknown edges. For example, we might simply choose the vertical edge 
length as the lapse degree of freedom and three of the diagonal edges as the 
shift and ignore the corresponding Regge equations associated with the verti- 
cal edge and the corresponding edges in the tent "floor." 

In a study of the Kasner cosmology, we have in fact imposed more 
sophisticated lapse and shift conditions that involve four algebraic relations 
among the N variables corresponding to the standard definitions of lapse and 
shift (Misner et al., 1973; Galassi, 1993). We have observed numerically that 
the conservation of energy-momentum (in the sense of automatic satisfaction 
of the unimposed equations) improves when we refine the lattice, and that 
the Jacobian of second partial derivatives of the action becomes more and 
more singular as we approach the continuum limit, in agreement with earlier 
theoretical predictions (Barrett, 1986; Sorkin, 1975a; Miller, 1986b; Galassi, 
1993; Sorkin, 1974; Hartle, 1985, 1986; Ro6ek and Williams, 1981, 1982, 
1984; Piran and Strominger, 1986). 
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The approach developed here for evolution is similar in many ways to 
the finite-difference algorithm used by Kurki-Suonio et  al. (1993); however, 
our discretized equations are written in an implicit form. To our knowledge 
this is the first implicit numerical scheme in (3+ 1)-dimensional numerical 
relativity. 

4. S OR KI N 'S  LATTICE 

We now illustrate the scheme by looking at one of the lattices for which 
it was originally suggested (Sorkin, 1975a). Consider first the 2-dimensional 
version, for a triangulation of S l • R. We label vertices by [t] or [t*] with 
t e Z, and join them according to the following rules: [tl], [t2] or [t~'], It*] 
are joined if 0 < Itl - t21 -- 2; and [tl], [t*] are joined if 0 < Itl - t21 - 
1. The resulting lattice is shown in Fig. 7. The triangles are of the form [t, 
t + 1, t + 2], where t and t + 2 were both starred or unstarred, and t + 1 
may or may not be starred. Clearly all vertices are equivalent. What is 
happening here is that S 1 is being represented by a square, and pairs of 
opposite vertices (e.g., [0][0"] and [1][1"]) are staggered in time. 

In four dimensions, we consider a triangulation of S 3 • R in which S 3 
is tessellated by 134, which has 8 vertices and 16 tetrahedra. [More generally, 
one can use the family of posets depicted in Fig. 5 of Sorkin (1991) to produce 
analogous triangulations for all the n-spheres S ~ , each such triangulation being 
the so-called "order-complex" of the corresponding poset. The square is the 

/ 

Identify 
Fig. 7. Sorkin's lattice for S t X R. 
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n = 1 representative of this family and 134 is the n = 3 representative.] The 
vertices are labeled as in the 2-dimensional case and the rules for joining 
them are: [q], [t2] or [t~'], [t*] are joined if 0 < It t - t21 --< 4; and [t11, 
[t*] are joined if 0 < Ifi - t21 < 3. Again all vertices are equivalent, and 
we may regard them as a succession of pairs [01[0"], [11[1"], [2][2"1 . . . . .  
These pairs are the antipodal vertices of 134 which in some sense are staggered 
in time. The 4-simplices are of the form [t, t + 1, t + 2, t + 3, t + 4], 
where either t and t + 4 are both starred or both unstarred. Each intermediate 
vertex may be starred or unstarred. 

The time evolution for this lattice proceeds as follows. We suppose that 
all lengths up to and including vertices [3] and [3*] are known. Now consider 
vertex [41, which is the vertex "above" [0]. Now, [4] is joined to seven of 
the "earlier" vertices by the edges going "backward" from it, 

[04] [ 14] [ 1 *4] [24] [2*4] [34] [3"4] 

These are the new edges in the tent above vertex [01, the first of them being 
the vertical edge and the others being the diagonal edges of this tent. Then 
consider the "forward"-going edges from vertex [0], namely 

[01][01"1102][02"1103][03"][04] 

of which the first six are the horizontal edges of the tent and the last is the 
vertical edge. We can check that the Regge equations for these edges involve 
only edges known already, plus the new edges listed above. Thus we have 
seven equations for seven unknowns, and if wanted to treat the equations as 
truly independent, we could solve uniquely for the new edge lengths. By  
doing so we would be letting the equations "choose their own gauge," and 
it is conceivable that they would make a reasonable choice, since we are 
rather far from the continuum limit. If, on the contrary, the approximate 
symmetries in Regge calculus manifested themselves in an unstable behavior 
of the resulting solutions, then we could instead eliminate four of the seven 
equations in favor of freely specifiable lapse and shift data, as discussed 
above. With either procedure we would, in the language of Section 2, have 
chosen vertex [0] and advanced it to vertex [4]. 

Notice that the procedure for advancing to vertex [4] involves neither 
vertices [0"] nor [4"], so in fact we could carry through the advance of vertex 
[0"] to vertex [4*] at exactly the same time. This is because the vertices [t] 
and [t*] have no edge in common. 

We can now repeat the process to find everything up to and including 
vertices [5] and [5*] and so on. At each step we will have two sets of seven 
equations in seven unknowns to solve (each set containing three "dynamical 
relations" and four "gauge conditions"). 
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Before performing the time evolution, we must solve the initial value 
problem. The equations used in advancing to vertices [4] and [4*] involve 
edges going back as far as [ -3 ]  and [ -3"] ,  so for initial data, we need to 
know the lengths of all the edges between [ -3] ,  [ -3*]  and [3], [3*]. This 
involves a total of 66 edges. Among these are just 18 edges whose Regge 
equations involve only edges from the 66. Thus one way of proceeding is to 
specify freely 48 edges and then solve the 18 equations for the remaining ones. 

5. C O M P A R I S O N  W I T H  O T H E R  N U M E R I C A L  W O R K  IN 3 + 1  
REGGE CALCULUS 

Before attempting to relate other approaches to that of this paper, let us 
emphasize the differences. Typical of earlier 3+ 1 approaches are those of 
Collins and Williams (1973), Porter (1987a,b), and Brewin (1987). The basic 
idea is to take successive spacelike hypersurfaces triangulated by tetrahedra 
and to join corresponding vertices by timelike lines, thus constructing a set 
of 4-prisms which tessellate the spacetime. The shape of a 4-prism is not 
uniquely determined by its edge lengths, so it is necessary to give further 
information to eliminate the floppiness. In the study of the Friedmann universe 
by Collins and Williams (1973), there is sufficient symmetry to determine 
the shapes of the prisms. In the work of Porter (1987a, b) and later of Dubal 
(1989), angles in the faces of the prisms are introduced as extra variables 
related to the extrinsic curvature. In all of these approaches, the Regge 
equations fall into two categories, evolution equations, which arise from 
variation of spacelike edges, and constraint equations, which come from 
variation of timelike edges. The equations are coupled together in such a 
manner as to make local solution impossible. 

Apart from the different triangulations and the appearance of distinct 
categories of equations, these methods also differ from the Sorkin approach 
in that the spacelike hypersurfaces of a distinguished family are clearly 
displayed at different times, whereas those in the Sorkin method described 
in Section 2 are represented as staggered in time, in the manner of puff pastry. 
In the latter method, a subset of the surfaces may be identified with those 
of the former method (though in general the choice of subset is not unique). 

We now describe how the prism construction can be modified so that 
the general method of Section 2 is applicable to it and then describe the 
relationship in detail for the particular lattice of Section 4. 

The modification required is a very simple one; all that is required is 
the addition of enough diagonals or braces to divide each prism into four 4- 
simplices. (We note with apology the possibility for confusion between these 
"diagonals" and the "diagonal edges" discussed up until now. The "diagonals" 
here are defined with respect to a particular family of nonintersecting 3- 
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dimensional hypersurfaces. The "diagonal edges" discussed previously are 
defined only with respect to a particular evolution step.) There are various 
prescriptions for doing this. One possibility is to order all the vertices in the 
upper hypersurface (which forms the top layer of all the prisms) and then 
connect the first vertex in each upper simplex (for all simplices of all dimen- 
sions) to every vertex of the corresponding simplex in the lower hypersurface. 
Then the k-simplices are just the subsets of a single cell spanned by vertices 
all of which are connected together. The resulting simplicial complex is then 
exactly what would be obtained by performing the evolution process of 
Section 2 on the lower hypersurface, advancing the vertices in exactly the 
order imposed on the upper hypersurface. [A similar construction is possible 
in any dimension; see, for example, Rourke and Sanderson (1982) and Section 
3 of Sorkin (1991).] 

Note that what we are claiming here is not that the prism methods are 
equivalent to that of Section 2, but rather that the lattices used can be modified 
to fit the new method. The prism methods per se are quite distinct dynamically, 
involving, for example, the use of angles as variables. Once the diagonal 
edges have been introduced, there is no point in using any extra variables, 
since one returns to the situation in conventional Regge calculus where the 
edge lengths completely specify the geometry. Clearly, the curvature in the 
4-prism-based geometries is less general than that allowed after the subdivi- 
sion into 4-simplices, since in the prism approach the curvature is constant 
across a 2-prism, which is not true when it is split into two triangles. 

Let us now show how to introduce the diagonals into the prism construc- 
tion for a particular lattice, which reproduces the lattice described in Section 
4. Consider 134, the 16-cell tessellation of S 3. Label the vertices at one moment 
of time [0], [1], [2], [3], [0"], [1"], [2"], [3*] (to tie in with Sorkin's notation), 
as shown in Fig. 8. At the next moment of "time" label the vertices [4], [5], 
[6], [7], [4"], [5"], [6"], [7*]. We now join corresponding vertices (those 
differing by 4) at successive times to obtain a collection of 4-prisms, which 
we now divide into 4-simplices in the following way. In each quadrilateral 
face within a prism, we draw in a diagonal joining the two vertices with 
nearer numbers. For example in the prism with lower tetrahedral face [0" 1"23] 
and upper tetrahedral face [4*5*67] (Fig. 9), we insert the diagonals [1"4"], 
[24"], [25"], [34"], [35"], and [36]. The prism is now divided into 4-simplices 
[0"1"234"], [1"234"5"], [234"5"6], and [34*5*67]. It is clear that the rule 
by which vertices are joined produces exactly the same lattice as in the Sorkin 
case. This means that when we apply the method of Section 2, the dynamics 
of the evolution procedure is exactly the same; to evolve to the next hypersur- 
face we have to solve two sets of seven equations for seven unknowns, four 
times over. The interpretation of the procedure may be slightly different here, 
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O* 

21 )2" 

1 

0 
Fig. 8. The 16-cell tessellation 134 of S 3. 

as already pointed out, in that there is no suggestion of the designated 
spacelike hypersurfaces being staggered in time or concertina'd in shape. 

The initial value problem here differs slightly from the Sorkin case. In 
order to evolve the spacetime, we need to specify two spacelike slices and 
the spacetime between them. This involves 24 spacelike edges in each hyper- 
surface, plus 8 timelike edges and 24 diagonals in between, making a total 
of 80 edges. The equations involving only these edges are those for the 
timelike edges and diagonals, a total of 32 equations. Thus we may specify 

7 

4* 6 

0* 1" 
Fig. 9. A prism used in the evolution of 134. It consists of two spacelike tetrahedra with 

corresponding vertices joined by timelike edges. 
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freely 48 edges (in exact agreement with the Sorkin case) and use the available 
equations to solve for the other 32. The difference arises because the initial 
value problem identified here corresponds to the minimal initial value problem 
identified in Section 2, together with the addition of the two evolution steps 
of vertex [3] to [7] and [3*] to [7"], which provides the additional 48 equations 
and 14 unknowns. 

One of the main points of this section was to show that local evolution 
(and sometimes parallel evolution) is possible, and indeed natural, in the 
previous work on 3 + 1 Regge calculus using prisms, provided the prisms are 
divided into 4-simplices by the insertion of extra edges. The possibility of 
advancing several vertices at the same time depends on the symmetry of the 
lattice. We have already seen how this happens for the lattice based on 134, 
and we shall end this section by looking briefly at how it works for the other 
regular tessellations of S 3. 

For eta, the five-cell triangulation of S 3, there are five vertices and ten 
edges. In this case, since all the vertices are connected to each other, it is 
not possible to advance any pair simultaneously. The evolution procedure 
can be shown to involve solving five equations for five unknowns, five times 
over, to advance to the next spacelike hypersurface. 

The 600-cell triangulation of S 3 can be built up from 30 blocks of 20 
tetrahedra meeting at single vertex. Clearly these blocks meet the condition 
that none of the central vertices shares an edge, and so we can advance the 
30 central vertices at the same time. We then consider another division into 
30 blocks, and advance their central vertices simultaneously. Since the total 
number of vertices is 120, the process will have to be repeated four times 
to evolve a spacelike hypersurface to the next distinct spacelike hypersurface. 
Now in each hypersurface, 12 edges meet at each vertex; we use the Regge 
equations for those edges and for the vertical edge from the vertex to its 
advancement in the next hypersurface to solve for that vertical edge and the 
12 diagonal edges involved. Thus the whole evolution process from one 
surface to the next distinct surface involves solving four times 30 sets of 13 
equations for 13 unknowns, making a total of 1560 edges to be solved for 
ultimately. These are made up of 720 edges in the new spacelike hypersurface, 
120 vertical edges, and 720 diagonals (which are also spacelike edges, playing 
the roles first of diagonal edges and then horizontal edges in the evolution 
steps). 

It is interesting to note the relationship between the number of variables 
to be solved for at each stage and the number of cells in the triangulation. 
The cases mentioned show the following progression: 

tetrahedra: 5, 16, 600, oo; unknowns: 5, 7, 13, 15. 
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Here the last entry is taken from Sorkin (1975a) for the R 4 triangulation 
and is the same number obtained in the asymptotic limit for the "quantity- 
production" lattice introduced in Miller (1986a). (However, this by no means 
proves that the average number of equations per vertex is necessarily 15 in 
the limit of an arbitrarily large number of tetrahedra. For example, the average 
number of edges per vertex for an infinitely barycentrically subdivided, 
triangulated three-dimensional hypersurface is 13/2, which leads in our evolu- 
tion scheme to 13+ 1 = 14 equations per vertex, rather than 15; and doing 
the subdivision directly on the four-dimensional complex for comparison 
would lead to the still smaller value of 25/2 = 12.5 edges or Regge equations 
per vertex. On the other hand, neither of these subdivision schemes is physi- 
cally appropriate, since repeated barycentric subdivision produces infinitely 
squashed simplices in the limit of infinite refinement.) 

6, PRELIMINARY NUMERICAL EXAMPLE 

We now illustrate the scheme described in this paper by applying it to 
the evolution of the 600-cell tessellation of S 3 mentioned in the previous 
section. Matter will be included in the form of pressureless dust, and we will 
look for homogeneous solutions, so the model will be an approximation to 
the Friedmann universe (Collins and Williams, 1973; Wheeler, 1964). 

We label the edge lengths in a way appropriate to homogeneous solutions. 
We distinguish a particular family of spacelike hypersurfaces, where each 
surface is generated by evolving every vertex in the preceding surface once. 
The (spacelike) edges lying in these surfaces are called spatial and their 
lengths are denoted by li. The proper lengths of the (timelike) vertical edges 
going between these hypersurfaces are denoted by vi, and the lengths of the 
(spacelike) diagonals between these surfaces are denoted by di. In each case, 
i labels the edges in the class. 

Rather than considering the usual description of matter in the Friedmann 
universe as dust of uniform density, we model it by 120 dust particles each 
of mass M/120, where M is the total mass, with one particle moving along 
each of the vertical edges along which the vertices evolve. We note that this 
entails a kinematical restriction on the particle paths with respect to the 
geometry, but as the paths made up from the consecutive vertical edges will 
be geodesics in our homogeneous solutions, the particles will indeed move 
on geodesics. The Regge action is then (in units such that c --- G = 1) 

1 M 
l = -ff-~ ~ Ah~'h -- ~i " - ~  (6.1) 

where the second sum is over vertical edges of proper length vi. The Regge 
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equations are obtained by varying this with respect to the edge lengths [cf. 
equation (2.1)]. Variation with respect to a vertical edge length vi gives 

c3Ah arM 
~]h ~v/eh - 15 (6.2) 

and with respect to a diagonal length d/or  spatial edge length li gives 

tgA h OA h 
~ - ~ / e h = 0 '  h E - -~- /eh=0 h (6.3) 

We now outline the evolution procedure used here. As discussed in the 
previous section, the general evolution step involves 13 equations in 13 
unknowns, and is expected to allow the approximate freedom to impose 
four lapse and shift conditions. We will, however, not consider this general 
situation, but will instead assume that there exist homogeneous solutions, 
i.e., that there exist solutions where the lengths li of the edges in any hypersur- 
face are equal, all v~ going between any two adjacent hypersurfaces are equal, 
and all di going between any two adjacent hypersurfaces are equal. We will 
then solve a minimal subset of equations (6.2) and (6.3) needed to generate 
a solution given this assumption. [In fact we will only use equations of the 
type of (6.2).] The condition on the vi may be viewed as being merely a 
choice of lapse, but the conditions on the d; and li are certainly more than a 
choice of shift, and involve an assumption about the dynamics of the system. 
Our approach may be compared with that of Brewin (1987), who made a 
similar assumption, but substituted it into the action in order to derive his 
equations, thus effectively finding stationary points only with respect to this 
class of geometries. His and our approaches are correct if and only if the 
full equations admit such solutions. 

To implement this approach we take some hypersurface, consider a 
vertex [0] in this hypersurface which is connected by spatial edges to the 12 
other vertices [1], [2] . . . . .  [12], and evolve [0] to the new vertex [0"]. This 
gives 13 new edges, the vertical one [00"] and 12 diagonals. The Regge 
equations available are one for the vertical edge [00"] and 12 for the spatial 
edges [01 ], [02] . . . . .  [012]. (For the first evolution step, the latter 12 equations 
are not really available since they involve edges in the previous spacetime 
slice which have not been specified. However, when the process is repeated 
after the first evolution of all vertices, these equations could be used.) We 
then assume all spatial edge lengths li in the surface are equal to some 
(known)/0, we set the proper length of the vertical edge [00"] equal to some 
v0 (i.e., we choose the lapse), and we assume that the 12 diagonals all have 
the same length, denoted by do. We then use the single Regge equation for 
the vertical edge [00"] to solve for do. There are 12 identical triangular 
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hinges, with edge lengths /o, Vo, and do and area Aom., sharing [00"], and 
five identical 4-simplices meeting on each triangle, so the Regge equation is 

7rM 
Vo cot 0or - (6.4) 

90 

where 

and 

d 2 + 18 -- v 2 
COt 0o - (6.5) 

4Aolo* 

%10* = 2"tr - 5 0 0 1 0 ,  (6.6) 

with 001o* being the hyperdihedral angle at [010"] in [01230"], say. 
Now consider the evolution of vertex [1] to [1"]. This gives the new 

vertical edge [l 1"], a new spatial edge [0*l*], and l l new diagonals. The 
Regge equations are one vertical [11"], one diagonal [10"], and 11 spatial 
(the latter 11 not being available the first time around). We again use the 
lapse freedom to set the length of the vertical edge to be Vo (consistent with 
homogeneity), and we assume that all new diagonals have the length do (now 
known). We then solve the Regge equation for the vertical edge [11"] to find 
the length of the new spatial edge [0" 1"], denoted by Ii. In this case there 
are three types of triangles meeting on [11"] and two types of 4-simplex, 
and the Regge equation reduces to 

2"rrM 
v0[l 1 cot 0o~121- + cot 01el0,1,] - (6.7) 

15 

where 

and 

c o t  01 - 
do 2 + 12 - v 2 

4 A l o , 1 .  

~121* = 2~ - 20ore. - 30121. 

~10*l* = 2~r - 501o-1. 

(6.8) 

(6.9) 

with Alo*l* being the area of triangle [10"1"], 0121* the hyperdihedral angle 
at [121*] in [1230"1"], and 01o.l. the hyperdihedral angle at [10*l*] in 4- 
simplex [1230" l*]. 

Under our assumption of homogeneity, this completes the evolution 
from the original hypersurface to the new one, since all vertical edges between 
the surfaces must have length Vo, all diagonals have length do, and all spatial 

(6.10) 
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edges on the new surface must  have length l~. The evolution to the next 
surface may  then be carried out in the same fashion, i.e., the next diagonal 
length d~ is found from the vertical equation associated with the evolution 
of  one vertex (given a choice v~ of  the next vertical edge length), and the 
next spatial length 12 is found f rom the evolution of  an adjacent vertex. Thus 
the data required to specify a solution of  the form we assume are the length 
l0 o f  the spatial edges on some initial surface and the vertical length between 
each pair o f  consecutive surfaces. In our calculations, the vertical lengths 
between all consecutive surfaces were chosen to be the same, equal to v. 

We will discuss the space o f  solutions in general below, but we commence  
with those which correspond to the cont inuum (Friedmann) solution, illus- 
trated by the one shown in Fig. 10. For  the purposes o f  this figure, the spatial 
edge length l on each hypersurface is converted into an equivalent 3-sphere 
radius a by equating the volume of  the simplicial hypersurface with that o f  
a smooth 3-sphere, i.e., 

l 3 
2~2a 3 = 600 6 - -~  (6.11) 

and this is compared with the scale factor o f  the Friedmann universe as a 
function o f  proper time. (The other variable one might  want to plot would  

~2 

v 
J 
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J I 

" I i 
' i I 

[ i 

4 6 

(M 

8 14 

Proper time 

Friedmanz 

,,o~1 \ \  

i0 12 

Fig. 10. Comparison of the effective radius a [as defined in the text, see equation (6.11)] of 
the 600-cell model (lower, dotted line) with the scale factor of the Friedmann universe (upper, 
solid line) as functions of proper time. The Regge model has v = 0.0102 and M = 10.2, and 
a is plotted versus proper time elapsed at the center of a tetrahedron [see text, equation (6.12)]; 
the comparison Friedmann universe has M = 10. (Units are such that c = G = 1.) 
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be the diagonal length d, but in the present case d is virtually identical in 
magnitude to 1, due to the small value chosen for the lapse parameter v.) Note 
that the proper time elapsed between two consecutive simplicial hypersurfaces 
may be defined in different ways. In Fig. 10 we have used the proper time 
~t as measured along a geodesic running from the center of a tetrahedron in 
one surface to the center of the corresponding tetrahedron in the neighboring 
surface, which is given by [see Collins and Williams (1973), equation (43)] 

gt = v 2 + ~ (l' - l) 2 (6.12) 

where I and l' are the spatial edge lengths on the two surfaces. This gives a 
slightly slower evolution of the approximate solution as a function of proper 
time than does the proper time elapsed along a vertical edge, which is just 
equal to v. 

The solution shown in Fig. 10 is a time-symmetric solution of the 
Regge equations in which the maximum spatial edge length occurs on two 
consecutive surfaces and the other surfaces are symmetrical about these two. 
That is, if the central surfaces are numbered 0 and 1, then pairs of surfaces 
numbered - n  and 1 + n, n a positive integer, have the same spatial edge 
lengths. (The diagonal lengths di are also symmetrical about the central value 
of d; going between surfaces 0 and 1.) For this solution it is found that the 
maximum spatial edge length l satisfies 

121[2-rr - 5 cos-l(1/3)] = 167rM/120 (6.13) 

This is the Regge analogue of the equation 3R -- 16-rrp (Wheeler 1964), 
which of course is the constraint equation applying at the surface of time 
symmetry in the continuum solution. From (6.11) and (6.13) we find that 
for the same mass M, the equivalent maximum a of the Regge solution is 
slightly less than the maximum scale factor a = 4M/(3"rr) of the Friedmann 
solution. In Fig. 10 we have compared our Regge solution (M = 10.2) with 
the Friedmann solution (M = 10.0) of equal maximum radius a. 

The Regge equations have a second time-symmetric solution, in which 
the maximum spatial length l is reached on a single hypersurface and the 
other hypersurfaces are symmetric in pairs around this hypersurface. This 
maximum 1 is slightly larger than that given by equation (6.13). There are 
also solution which have a maximum l whose value lies between these two, 
which is reached on one hypersurface, and which are not time-symmetric. 
These are all acceptable models of the Friedmann universe, and on the scale 
of Fig. 10 they are indistinguishable from the solution shown there. 

The solution in Fig. 10 has the vertical edge length v = 0.0102. The 
separate plotted points overlap for most of the solution, but may be distin- 
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guished toward the ends of the evolution. For v = 0.102, the points in the 
solution are of course spaced further apart, but they lie on the same curve 
as a function of proper time. This supports the expectation that v is a gauge 
degree of freedom. 

As was observed previously by Brewin (1987) for his models, the evolu- 
tion of the Regge universe stops at a finite volume, i.e., solutions cease to exist 
before the universe collapses to zero volume. Presumably this corresponds to 
the collapse becoming so fast that the vertical edges would have to become 
spacelike in order for solutions to exist, but we have not investigated this 
further. The endpoint is not very sensitive to the value of v used in the 
calculations. 

The Regge equations also have solutions which do not correspond to 
the Friedmann universe. To begin with, equation (6.7) has two roots for l~ 
for given values of 10, do, and v0. One of these roots satisfies the equation 

d~ = -v~ + loll (6.14) 

which is the same as equation (6.6) of Brewin (1987). Brewin obtained this 
equation from the assumption that the 4-simplices in the model are grouped 
into regular, untwisted 4-prisms. We have not investigated the geometrical 
interpretation of the other root. The root of equation (6.7) satisfying (6.14) 
was the one chosen in obtaining the solution shown in Fig. 10. The other 
root for It is larger in the expansion phase and smaller in the contraction 
phase, giving a solution which evolves about twice as fast as this one. 

For given values of l0 and Vo, equation (6.4) typically has four roots for 
do, which may be naturally grouped into pairs, with one member from each 
pair giving an expansion of the universe and the other giving a contraction. 
One of these pairs of roots leads to the expanding and recontracting solution 
shown in Fig. 10, while the other gives a universe which expands without limit 
from a finite initial volume plus the corresponding time-reversed solution. The 
physically interesting roots lie in a sharp valley in the center of a peak of 
the function on the left-hand side of equation (6.4) (considered as a function 
of do) and could not be reliably found with a Newton-Raphson algorithm, 
so the bisection method was used. Other spurious solutions are allowed in 
which we jump from one pair of roots to another, or in which the expansion/ 
contraction of the universe reverses arbitrarily. Some of these spurious solu- 
tions clearly arise because equation (6.4) is associated with a vertical edge 
and so is not sensitive to data prior to the current hypersurface. In particular, 
an expansion-contraction ambiguity had to be present for this reason. Thus 
consideration of the equations ignored in our analysis can be expected to 
eliminate some or all of the spurious solutions. 

In summary, we have obtained a solution which is a reasonable approxi- 
mation to the Friedmann universe, and which compares acceptably to previous 
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solutions (Collins and Williams, 1973; Brewin, 1987). We emphasize that 
our method generalizes in a straightforward way to more complicated models, 
with only a moderate increase in the size of the individual algebraic problems 
to be solved. The next stage in testing this method is to impose the homogene- 
ity condition on the initial data, but only to impose lapse and shift choices on 
the evolution, and to verify that the full equations do admit the homogeneous 
solutions discussed here, while excluding the spurious solutions which our 
truncated treatment permitted. As a first step, one can check how well the 
solution reported here satisfies the equations which were ignored in obtaining 
it. Work on this is in progress, together with further investigations of the 5-, 
16-, and 600-cell universes, as well as work on the evolution of the Kasner 
universe using a general code for T 3 topologies based on the "quantity- 
production lattice" (M. Galassi, private communication, 1994; Miller, 1986a). 
Results will be reported elsewhere. 

7. CONCLUSIONS 

We have described an implicit evolution scheme for Regge calculus. 
The most important feature of this scheme is the possibility of local evolution 
for one vertex at a time, a result of the fact that the Regge equation for an 
edge involves only those simplices containing the edge. Parallel evolution is 
possible for groups of vertices with no edges in common. Both of these 
features are very important for numerical calculations. 

An important question is whether all the variational equations are inde- 
pendent. In the continuum limit, as we have discussed, one expects the 
approximate symmetries in the lattice to become exact, giving rise to exact 
contracted Bianchi identities. The equations will no longer be independent, 
and the freedom to specify the lapse and shift will be recovered. Away from 
the continuum limit, there will be approximate contracted Bianchi identities, 
giving four conditions per vertex. It will thus probably be best to ignore four 
equations per vertex and utilize the resulting freedom to specify the discrete 
lapse and shift, as we did in Section 6 with the lapse. As for our results 
there, it has been shown in other particular cases (Galassi, 1993) as well that 
the evolution is independent of the values of the discrete lapse and shift to 
high accuracy, an echo of the diffeomorphism symmetry of the continuum. 

When we compare the new method with the modification of the prism- 
based approach described earlier, we see that the symmetries of the lattice 
are more obvious in the new approach than for the modified prism method, 
since there is some arbitrariness in dividing the prisms into 4-simplices and 
since not all of the symmetries need take the prism-based hypersurfaces 
into themselves. 
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The distinction between evolution equations (arising from variation of 
spacelike edges) and constraint equations (from variation of timelike edges 
and diagonals) in the prism approach is not present a priori  in the new 
method, although some distinction may arise as a result of consideration of 
approximate symmetries or from a choice of a distinguished family of space- 
like hypersurfaces. In the prism approach, it is clear which hypersurfaces are 
meant to correspond to constant times; in the new method, the question of 
how the hypersurfaces are staggered in time seems to depend on the initial 
data, which provides the only distinction in the theory between the different 
classes of hypersurface. 

The numerical example described in this paper illustrates the effective- 
ness of this approach to Regge calculus. Clearly there are many aspects still 
to be explored; these include the introduction of more general source terms 
[such as an electromagnetic field, to which our scheme extends essentially 
unchanged (Sorkin, 1975b)], the construction of lattices with different topolo- 
gies, and the development of efficient ways to present the results. It seems 
at this stage of the development of the theory that it has the attractive features 
of finite-difference methods and also appears to have the advantage of being 
able to handle the topological complications found in such problems as the 
two-black-hole collision and the spatially closed cosmologies. There is a 
need to test it on evolution problems with many degrees of freedom and to 
compare its efficiency and accuracy with those of the corresponding finite- 
difference schemes. 
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